organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhao-Di Liu, Shu-Ping Zhang, Shui-Sheng Chen and Si-Chang Shao*

Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China

Correspondence e-mail: shaosic@fync.edu.cn

Key indicators

Single-crystal X-ray study T = 291 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.039 wR factor = 0.105 Data-to-parameter ratio = 9.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(2-Hydroxylbenzoyl)-N'-(picolinoyl)hydrazine

The title molecule, $C_{13}H_{11}N_3O_3$, is non-planar. The dihedral angle between the pyridine and benzene rings is 80.5 (1)°. Intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds link the molecules into columns along the *a* axis.

Received 31 August 2006 Accepted 2 September 2006

Comment

N-Aroyl-*N'*-picolinoyl hydrazines can be used as potential agents to treat iron-overload disease (Bernhardt *et al.*, 2005). We report here the crystal structure of the title compound, (I).

The title molecule is non-planar (Fig.1). The amide group (N2/C6/O1) attached to the pyridine ring is twisted by 15.2 (3)°, while that (N3/C7/O2) attached to the benzene ring is twisted by 10.0 (2)°. The dihedral angle between the N2/C6/O1 and N3/C7/O2 planes is 76.8 (1)°. The C6–N2–N3–C7 torsion angle is -77.6 (3)° and the O1–C6···C7–O2 pseudotorsion angle of 89.6° indicates a +synclinal orientation for the two carbonyl groups. The dihedral angle between the pyridine and benzene rings is 80.5 (1)°.

One of the hydrazine NH groups is involved in an intramolecular N3-H3A···O3 hydrogen bond. Intermolecular N-H···O and O-H···O hydrogen bonds (Table 1) involving the other NH group and the OH group link symmetry-related molecules into columns along the *a* axis (Fig.2).

Experimental

The title compound was synthesized according to a literature method (Bernhardt *et al.*, 2001). Crude products were recrystallized twice from ethanol (yield 70%). Single crystals suitable for X-diffraction study were obtained by slow evaporation of an ethanol solution.

© 2006 International Union of Crystallography All rights reserved

Crystal data

 $\begin{array}{l} C_{13}H_{11}N_{3}O_{3}\\ M_{r}=257.25\\ Orthorhombic, P2_{1}2_{1}2_{1}\\ a=4.6152\ (7)\ \text{\AA}\\ b=10.0698\ (16)\ \text{\AA}\\ c=24.928\ (4)\ \text{\AA}\\ V=1158.5\ (3)\ \text{\AA}^{3} \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: none 6078 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0577P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	+ 0.0547P]
$wR(F^2) = 0.105$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
1551 reflections	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
173 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	

Z = 4

 $D_x = 1.475 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Needle, colourless

 $0.46 \times 0.15 \times 0.14 \text{ mm}$

1551 independent reflections

1260 reflections with $I > 2\sigma(I)$

 $\mu = 0.11 \text{ mm}^{-1}$

T = 291 (2) K

 $\begin{aligned} R_{\rm int} &= 0.039\\ \theta_{\rm max} &= 27.5^\circ \end{aligned}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H2A\cdots O2^{i}$ $N3-H3A\cdots O3$ $O3-H3B\cdots O1^{ii}$	0.86	2.29	2.988 (3)	138
	0.86	1.95	2.636 (3)	136
	0.82	1.87	2.678 (3)	170

Symmetry codes: (i) x - 1, y, z; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 2$.

All H atoms were placed in geometrically idealized positions (O– H = 0.82 Å, N–H = 0.86 Å and C–H = 0.93 Å) and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C,N,O)$. In the absence of significant anomalous dispersion effects, Friedel pairs were merged before the final refinement.

Figure 2

The crystal packing of (I), viewed along the a axis. Dashed lines indicate intermolecular hydrogen bonds.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXL97*.

The authors thank Fuyang Normal College, China, for research grant No. 2005LQ06.

References

Bernhardt, P. V., Chin, P. & Richardson, D. R. (2001). J. Biol. Inorg. Chem. 6, 801–809.

Bernhardt, P. V., Chin, P., Sharp, P. C., Wang, J.-Y. C. & Richardson, R. (2005). J. Biol. Inorg. Chem. 10, 761–777.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version. 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.